# Gutachten



Hydrogeologie Grundwassermodelle Boden- und Grundwasserschutz Geothermie Brunnenbau Rohstoffgewinnung Bodenkunde Wirtschaftlichkeitsanalysen

### Büro für Hydrogeologie und Umwelt GmbH

Dipl.-Geol. Dr. Christoph Möbus Dipl.-Umweltwiss. M.Sc. Dr. Dr. Thomas Hanauer

Europastraße 11 35394 Gießen

Telefon: 06 41 / 9 44 22 0 Telefax: 06 41 / 9 44 22 11 E-Mail: hg@buero-hg.de Internet: www.buero-hg.de

QM-System in Anlehnung an DIN EN ISO 9001

### Projekt:

Wasserversorgung der städtischen Waldflächen der Stadt Gießen Bodenkundliche Übersichtskartierung im Schiffenberger Wald, Stadtgebiet Gießen

### Auftraggeber:

Universitätsstadt Gießen Amt für Umwelt und Natur Berliner Platz 1 35390 Gießen



p:\pro2021\21023\21023-04-g01\gu\_21023-04-boku kartierung#nachbesprch.docx

© Büro HG GmbH

PNr.: 21023/4 than Datum: 08.01.2025



# I. Inhaltsverzeichnis (Text)

|                                                                                              |                                                                                                                                                                                                                                                                                                                                                         | Seite                        |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|--|--|--|
| 1.                                                                                           | Veranlassung                                                                                                                                                                                                                                                                                                                                            | 1                            |  |  |  |  |  |  |  |
| 2.                                                                                           | rundlagen                                                                                                                                                                                                                                                                                                                                               |                              |  |  |  |  |  |  |  |
| 3.                                                                                           | Kartierung                                                                                                                                                                                                                                                                                                                                              | 6                            |  |  |  |  |  |  |  |
| 3.1                                                                                          | Bodenformen                                                                                                                                                                                                                                                                                                                                             | 6                            |  |  |  |  |  |  |  |
| 3.2                                                                                          | (Nutzbare) Feldkapazität                                                                                                                                                                                                                                                                                                                                |                              |  |  |  |  |  |  |  |
| 4.                                                                                           | Grundwassermessstellen                                                                                                                                                                                                                                                                                                                                  |                              |  |  |  |  |  |  |  |
| 5.                                                                                           | Zusammenfassung                                                                                                                                                                                                                                                                                                                                         | 12                           |  |  |  |  |  |  |  |
| > <b>Tabelle</b> Tabelle 3-1:                                                                | nverzeichnis<br>Kartierte Bodentypen und bodenhydrologische Kennwerte gemäß /1/                                                                                                                                                                                                                                                                         | 9                            |  |  |  |  |  |  |  |
| > Abbildungsverzeichnis                                                                      |                                                                                                                                                                                                                                                                                                                                                         |                              |  |  |  |  |  |  |  |
| Abbildung 2-<br>Abbildung 2-<br>Abbildung 2-<br>Abbildung 3-<br>Abbildung 3-<br>Abbildung 3- | <ol> <li>Bodenarten gemäß Amtlicher Bodenschätzung aus /2/</li> <li>Wasserhaushalt und Trophie gemäß forstlicher Standortkartierung der Stadt Gieß und kartierte Bodenformen (vgl. Anlage 2)</li> <li>Wasserhaushaltsstufen gemäß forstlicher Standortkartierung /5/</li> <li>Bodengroßlandschaft [] des Berglandes /1/, S. 323 (bearbeitet)</li> </ol> | 2<br>3<br>8en<br>4<br>5<br>7 |  |  |  |  |  |  |  |
| Abbildung 4-                                                                                 | 1: GwStandsentwicklung in den temporären GWM                                                                                                                                                                                                                                                                                                            | 11                           |  |  |  |  |  |  |  |



# II. Anlagenverzeichnis

| Anlage 1 | Übersicht der Sondierungen (TK 25)            |
|----------|-----------------------------------------------|
| Anlage 2 | Übersichtsbodenkarte                          |
| Anlage 3 | Bodenkundliche Kartierbögen                   |
| Anlage 4 | Ausbau GWM                                    |
| Anlage 5 | Grundwasser-Abstichsmessungen                 |
| Anlage 6 | Bodenhydrologische Parameter der Sondierungen |
| Anlage 7 | Fotodokumentation                             |



# III. Verzeichnis der verwendeten Unterlagen

- /1/ Bodenkundliche Kartieranleitung 5. Aufl., Ad-hoc-AG Boden, E. Schweizerbart'sche Verlagsbuchhandlung oHG, Hannover 2005
- /2/ <a href="https://bodenviewer.hessen.de/mapapps/resources/apps/bodenviewer/index.html?lang=de;">https://bodenviewer.hessen.de/mapapps/resources/apps/bodenviewer/index.html?lang=de;</a>; 19.01.2023
- /3/ <a href="https://geologie.hessen.de/mapapps/resources/apps/geologie/index.html?lang=de">https://geologie.hessen.de/mapapps/resources/apps/geologie/index.html?lang=de</a>; 22.08.2023
- Modellgestützte Studie Gießener Waldflächen als aktive Starkregenvorsorge -T1, HG Büro GmbH, Gießen, Oktober 2024
- /5/ Bodenbewertung und Bodenschutz, Stahr/Gauer in Lehrbuch der Bodenkunde in Scheffer/Schachtschabel et al. 17. Aufl., Springer Spektrum, Berlin, 2018
- /6/ G. Hintermaier-Erhard, W. Zech, Wörterbuch der Bodenkunde, Ferdinand Enke Verlag, Stuttgart 1997



# IV. Verzeichnis verwendeter Abkürzungen

BB Braunerde Bu Buche

BK 50 Bodenkarte von Hessen 1:50 000

Fi Fichte

(n)FK(We) (nutzbare)Feldkapazität(effektiver Wurzelraum)

GG Gley

Gw... Grundwasser...

GWM Grundwasser-Messstelle

Ki Kiefer

LL Parabraunerde

I lehmig mu Mullmo Moder-

N, E, S, W Himmelsrichtungen

n Norm-

p pseudovergleyt

RN Ranker
s sandig
SS Pseudogley
sw'... südwestlich...

Sw Stauwasser-Horizont

t tonig
u schluffig
v Skelet
(v) skeletführend
YK Kolluvisol



### 1. Veranlassung

Im Stadtwald Gießen soll die Bewässerungssituation der Waldflächen verbessert und gleichzeitig Maßnahmen zur Starkregenvorsorge getroffen treffen, da die Waldflächen als Elemente der aktiven Starkregenvorsorge genutzt werden können, um eine erhöhte Klima-Resilienz zu erreichen.

Hierfür bietet sich die folgende Vorgehensweise für den Stadtwald nw' des Schiffenbergs an:

- Kleinskalige Geländeanalyse mittels Auswertung eines Digitalen Geländemodells
- Bodenkundliche Übersichtskartierung zur Charakterisierung der Bodenformen in den jeweiligen Bewirtschaftungseinheiten, zunächst nur großmaßstäbig
- Gekoppelte Bodenwasserhaushalts- und Oberflächenwasserabflussmodellierung ergänzend zum bestehenden GwModell zur Ermittlung von Retentionsräumen ("System der 1.000 Mulden")
- Kalibrierung auf der Grundlage der Auswertung der Beobachtungen von historischen Starkregen-Ereignissen
- Ableitung von Vorzugsflächen für technische Umsetzungen von Regenwasserrückhalteflächen/Versickerungsmulden und Darstellung in einem zusammenfassenden Gutachten.



# 2. Grundlagen

Das UG wird hptsl. durch Böden aus lösslehmhaltigen bis -reichen Solifluktionsdecken mit basenarmen oder basischen Gesteinsanteilen geprägt /2/. Sie werden im Tal von miozänen Süßwasserschichten (Ton) unterlagert und sind in Teilen auch aus diesen entstanden (zumindest im Unterboden). In den Höhenlagen werden sie von miozänem Basalt /3/ geprägt, dessen entfestigte Oberfläche die Basislage (skizziert in *Abbildung 3-1*) bildet und dessen Einfluss im Profil von unten nach oben abnimmt. Die Bodenverhältnisse sind in Anlage 2 im Detail wiedergegeben.

Die FK im ersten Meter wird mit 140 - 220 mm (gering) und >300 - 380 mm angeben (mittel); vereinzelt sogar mit >380 - 460 mm (hoch) (s.u.).

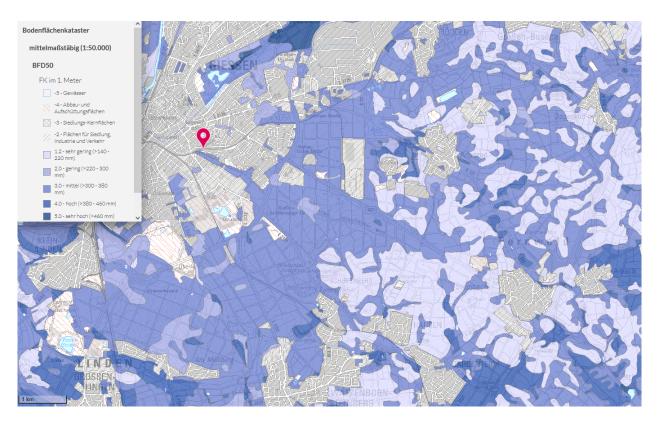



Abbildung 2-1: FK im ersten Meter aus /2/

Da das UG zu großen Teilen bewaldet ist, liegt nur für einen sehr kleinen Teil die amtliche Bodenschätzung vor (s.u.); die Böden weisen entsprechend dem Ausgangsgestein eine lehmige Bodenart und ein hptsl. mittleres Ertragspotential auf.

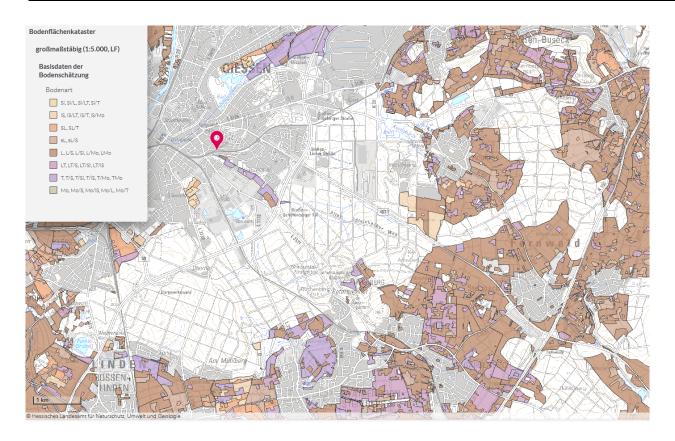



Abbildung 2-2: Bodenarten gemäß Amtlicher Bodenschätzung aus /2/

Der forstlich genutzte Teil des UG wird durch die forstliche Standortkartierung gut beschrieben, allerdings beschränkt sich diese auf die Trophie und den Wasserhaushalt. Insbesondere im Tal, auf den kaolinitischen Tonen, dominieren wechselfeuchte, mesotrophe Standorte, auf Basalt dagegen frische und eutrophe, was sich mit der amtlichen Bodenkarte /2/ sowie den Ergebnissen der Kartierung deckt (s. Kapitel 3.1).

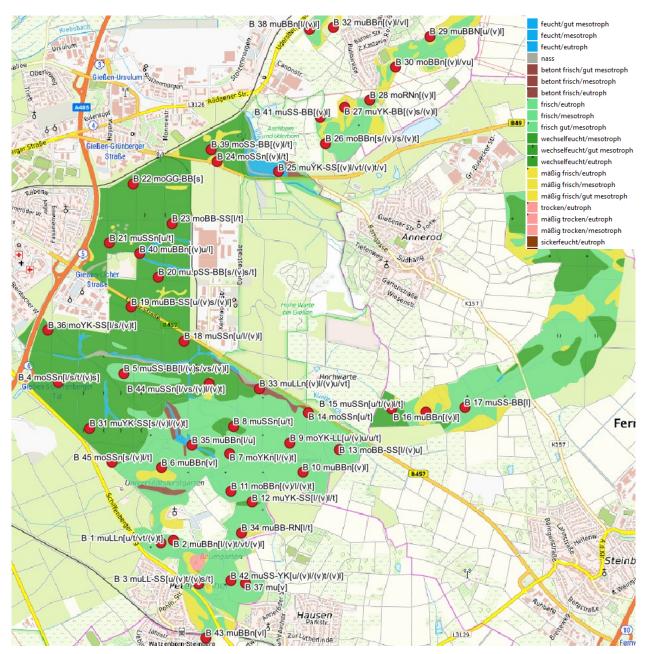



Abbildung 2-3: Wasserhaushalt und Trophie gemäß forstlicher Standortkartierung der Stadt Gießen und kartierte Bodenformen (vgl. Anlage 2)

Die Hauptbaumarten (in der Reihenfolge: Ki > Fi > Bu > Ei) sprechen in ihrem Wachstum sehr stark auf den Wasserhaushalt an, der deshalb in den forstlichen Kartierverfahren eine wichtige Rolle spielt. Ein Ansatz sind Gelände-Wasserhaushaltsstufen, bei denen Geländesituationen in Kombination mit der nFK in eine Spanne von **betont frisch** bis **trocken** unterteilt werden (s. *Abbildung 2-4*). Einen Schritt weiter geht die Bewertung mit Gesamtwasserhaushaltsstufen. Stauwasser wird durch staunass, **wechselfeucht**, mäßig wechselfeucht, oder grundwechselfeucht (staufrisch), mäßig wechseltrocken und wechseltrocken gekennzeichnet. Die Zuordnung ergibt sich aus der Höhe des Wassereinstaus zum Vegetationszeitbeginn und der Andauer des Stauwassers. Grundwasser wird in die Wasserhaushaltsstufen nass, feucht, (hangfeucht), grundfeucht und grundfrisch eingestuft /5/ S. 701f.

Auch im UG sind die Verbreitungsgebiete von pseudovergleyten Böden größtenteils als wechselfeucht ausgewiesen (vgl. *Abbildung 2-3*); die Klassen "Wechselfeucht", gefolgt von "Frisch", dominieren im UG.



Der Einfluss des Basalts respektive dessen Verwitterungsprodukte macht sich durch die Dominanz der Trophiestufen "mesotroph" und "eutroph" bemerkbar.

| □ Tab. 11.4 Allgemeine Definitionen von Wasserhaushaltsstufen in der forstlichen Standortkartierung |                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Stufe                                                                                               | Definition                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Sehr trocken                                                                                        | In der Vegetationszeit (VZ) kommt es schon kurze Zeit nach Niederschlägen wegen<br>äußerst geringer nWK der Böden (flachgründig oder stark durchlässig, skelettreich) rasch<br>zu deutlichem Wassermangel                                                                                                                       |  |  |  |  |  |
| Trocken                                                                                             | In der VZ regelmäßig länger anhaltender deutlicher Wassermangel                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Mäßig<br>trocken                                                                                    | In der VZ vorübergehend deutlicher Wassermangel                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Mäßig frisch                                                                                        | In der VZ kann Wassermangel noch kurzzeitig auftreten                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Frisch                                                                                              | Infolge hoher nWK ganzjährig gut wasserversorgt; Wassermangel ist nur in ausgeprägten<br>Trockenperioden denkbar; hoher Anteil von Grobporen im Boden, deshalb auch bei Wassersättigung bis nWK kein Luftmangel in der VZ                                                                                                       |  |  |  |  |  |
| Sehr frisch                                                                                         | Auch während längerer Trockenperioden steht für die Baumvegetation immer ausreichend<br>Bodenwasser zur Verfügung; bei hohem Niederschlagsangebot kann in den tieferen<br>Bodenschichten Luftmangel kurzzeitig auftreten; häufig Pseudogleyflecken im Unterboden<br>(tiefer als 60 cm uGOF), besonders der lehmig/tonigen Böden |  |  |  |  |  |

Abbildung 2-4: Wasserhaushaltsstufen gemäß forstlicher Standortkartierung /5/



### 3. Kartierung

Die Ergebnisse der Bodenkundlichen Kartierung sind im Folgenden dargestellt. Diese erfolgte gemäß /1/, wobei der Oberboden mittels Kleinschurf, Unterboden und Untergrund mittels Pürckhauersondierung (Durchmesser 28 mm, Nutbreite 18 mm) angesprochen wurden.

#### 3.1 Bodenformen

Die laut BK 50 /1/ ausgewiesenen Böden wurden häufig als Übergangsbodentypen angetroffen, hauptsächlich zwischen Pseudogleyen und Braunerden, aber auch Übergänge zu Kolluvisol in den entsprechenden Reliefpositionen. Die tatsächlichen Bodenverhältnisse sind demnach deutlich komplexer als es die BK 50 /1/ mit ihrem relativ groben Maßstab suggeriert (vgl. Tabelle 3-1 und Anlage 2).

Die Bodenansprache nach /1/ ist Anlage 3 zu entnehmen und in Anlage 7 dokumentiert.

Hinsichtlich der Gründigkeit kann grundsätzlich zwischen den tiefgründigen Böden im Bereich der miozänen Süßwasserschichten (Schiffenberger Tal) und den Böden auf Basalt respektive den darauf gebildeten Fließerden des Schiffenbergs und den übrigen Höhenzügen¹ unterschieden werden. Bei Ersteren dominieren insbesondere im Bereich des Schiffenberger Tals im Ober- und Unterboden sandige Bodenarten mit geringem Skelettanteil, die in tieferen Schichten in lehmig-tonige übergehen; hier dominieren Pseudogleye. Es dominieren dagegen bei Letzteren Braunerden. Diese weisen i.d.R. bereits im Oberboden bindige Bodenarten und einen hohen Skelettanteil auf. Im Falle der B28, B34 und B37 steht bereits unmittelbar nach dem humosen Oberboden der Untergrund an.

Die vor Ort angetroffene Substratabfolge und die damit einhergehenden Bodenwasserverhältnisse sind typisch für Mittelgebirgsböden im Hang- und Talbereich, wie der folgenden Abbildung 3-1 entnommen werden kann.

-

<sup>&</sup>lt;sup>1</sup> Uderberg und Mühlberg im N sowie Buchberg und Kirchberg im S

#### Landschaften

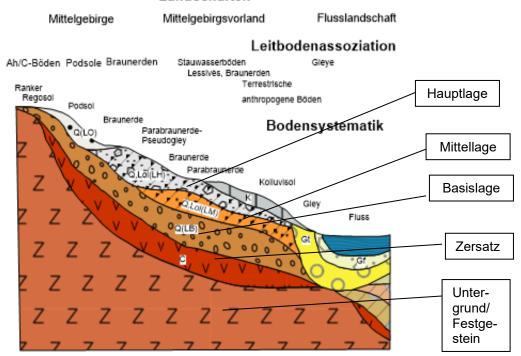



Abbildung 3-1: Bodengroßlandschaft [...] des Berglandes /1/, S. 323

(bearbeitet)

Unter den miozänen Sanden stehen dichte, skelettarme Tone an, die den Stauhorizont der o.g. pseudovergleyten Böden im Schiffenberger Tal ausmachen. Die Gleye und Flussablagerungen sind dann in nw'-Verlängerung Richtung Lahn respektive in s'-Verlängerung des UG Richtung Lückbach verbreitet (s. Anlage 2). Die Verhältnisse am Hangfuß der o.g. Höhenzüge sind in der folgenden Abbildung verdeutlicht:

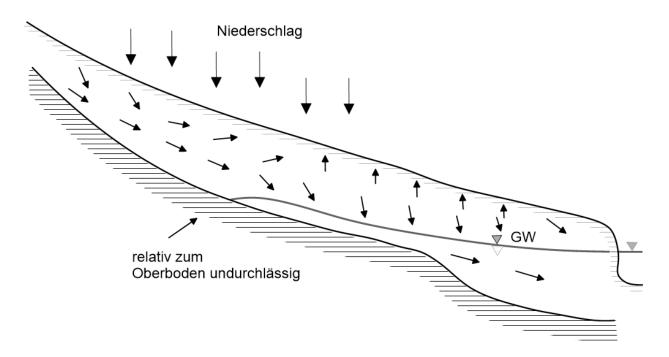



Abbildung 3-2: Prinzip des Interflow nach /6/, S. 136



# 3.2 (Nutzbare) Feldkapazität

Die hohen Skelettgehalte im Verbreitungsgebiet von Basalt erschweren die Ermittlung der (n)FK, da in dem Ø 28 mm Bohrstock größere Steine nicht erfasst werden. Die Ermittlung ist Anlage 6 zu entnehmen. Die erhobenen Daten sind in /4/ eingeflossen. Bezogen auf den Ersten Meter decken sich die erhobenen FK größenordnungsmäßig mit den amtlichen (vgl. Abbildung 2-1).



Tabelle 3-1: Kartierte Bodentypen und bodenhydrologische Kennwerte gemäß /1/

| Sondie-<br>rung | FK [mm]<br>Profil | nFK [mm]<br>Profil | Bodensyste-<br>matische Ein-<br>heit (Varietät) | Substrat        | Endteufe<br>[cm] | We<br>[dm]** | We<br>[dm]**<br>Laub-<br>gehölz | Gw<br>[cm u.<br>GOK] |
|-----------------|-------------------|--------------------|-------------------------------------------------|-----------------|------------------|--------------|---------------------------------|----------------------|
| B1              | 412               | 143                | muLLn                                           | u/t/vt/(v)t     | 100              | 9            | 13,5                            |                      |
| B2              | 316               | 140                | muBBn                                           | I/(v)t/vt/(v)I  | 100              | 8            | 12                              |                      |
| В3              | 347               | 199                | muLL-SS                                         | u/(v)t/(v)s/t   | 90               | 8            | 12                              |                      |
| B4*             | 246               | 138                | moSSn                                           | I/s/t/(v)s      | 75               | 8            | 12                              |                      |
| B5              | 233               | 142                | muSS-BB                                         | I/(v)s/vs/(v)I  | 8                | 7            | 10,5                            |                      |
| В6              | 52                | 28                 | muBBn                                           | vl              | 23               | 14           | 21                              |                      |
| B7              | 328               | 165                | moYKn                                           | l/(∨)t          | 70               | 11           | 16,5                            |                      |
| B8              | 494               | 176                | muSSn                                           | u/t             | 100              | 8            | 12                              |                      |
| В9              | 354               | 199                | moYK-LL                                         | u/(v)u/u/t      | 85               | 9            | 13,5                            |                      |
| B10             | 49                | 25                 | muBBn                                           | (v)l            | 24               | 13           | 19,5                            |                      |
| B11             | 280               | 122                | moBBn                                           | (v)/l/(v)t      | 90               | 8            | 12                              |                      |
| B12             | 401               | 183                | muYK-SS                                         | I/(∨)I/t        | 100              | 8            | 12                              |                      |
| B13             | 104               | 62                 | moBB-SS                                         | l/(v)u          | 25               | 14           | 21                              |                      |
| B14             | 477               | 186                | moSSn                                           | u/t             | 95               | 8            | 12                              |                      |
| B15             | 392               | 162                | muSSn                                           | u/t/(v)l/t      | 85               | 8            | 12                              |                      |
| B16             | 198               | 106                | muBBn                                           | (v)l            | 55               | 10           | 15                              |                      |
| B17             | 499               | 171                | muSS-BB                                         | 1               | 85               | 10           | 15                              |                      |
| B18             | 326               | 177                | muSSn                                           | u/l/(v)l        | 90               | 13           | 19,5                            |                      |
| B19             | 201               | 121                | muBB-SS                                         | u/(v)s/(v)l     | 60               | 10           | 15                              |                      |
| B20             | 305               | 145                | mu.pSS-BB                                       | s/(v)s/t        | 80               | 10           | 15                              |                      |
| B21             | 877               | 406                | muSSn                                           | u/t             | 200              | 11           | 16,5                            |                      |
| B22*            | 327               | 219                | moGG-BB                                         | s               | 200              | 8            | 12                              | 170                  |
| B23             | 326               | 171                | moBB-SS                                         | I/t             | 160              | 8            | 12                              |                      |
| B24             | 548               | 220                | moSSn                                           | (v)l/t          | 140              | 8            | 12                              |                      |
| B25             | 435               | 179                | muYK-SS                                         | (v)I/vt/(v)t/v  | 130              | 13           | 19,5                            |                      |
| B26             | 145               | 81                 | moBBn                                           | s/(v)/s/(v)t    | 39               | 8            | 12                              |                      |
| B27             | 489               | 263                | muYK-BB                                         | (v)s/(v)l       | 130              | 8            | 12                              |                      |
| B28             | 92                | 53                 | moRNn                                           | (v)l            | 20               | 14           | 21                              |                      |
| B29             | 264               | 143                | muBBn                                           | u/(v)l          | 60               | 10           | 15                              |                      |
| B30             | 72                | 41                 | moBBn                                           | (v)l/vu         | 18               | 14           | 21                              |                      |
| B31             | 723               | 407                | muYK-SS                                         | s/(v)l/(v)t     | 75               | 8            | 12                              |                      |
| B32             | 234               | 107                | muBBn                                           | (v)l/vl         | 100              | 13           | 19,5                            |                      |
| B33             | 94                | 52                 | muLLn                                           | (v)l/(v)u/vt    | 24               | 11           | 16,5                            |                      |
| B34             | 111               | 54                 | muBB-RN                                         | I/t             | 22               | 11           | 16,5                            |                      |
| B35             | 99                | 55                 | muBBn                                           | l/u             | 22               | 14           | 21                              |                      |
| B36             | 275               | 155                | moYK-SS                                         | I/s/(v)t        | 75               | 8            | 12                              |                      |
| B37             | 52                | 26                 | muBB-RN                                         | V               | 16               | 11           | 16,5                            |                      |
| B38             | 288               | 137                | muBBn                                           | l/(v)l          | 70               | 13           | 19,5                            |                      |
| B39             | 326               | 170                | moSS-BB                                         | (v)l/t          | 80               | 13           | 19,5                            |                      |
| B40             | 317               | 193                | muBBn                                           | (v)u/l          | 170              | 6            | 9                               |                      |
| B41             | 212               | 103                | muSS-BB                                         | (v)l            | 75               | 8            | 12                              |                      |
| B42             | 486               | 228                | muSS-YK                                         | u/(v)l/(v)t/(v) | 150              | 10           | 15                              |                      |
|                 |                   |                    |                                                 | I               |                  |              |                                 |                      |
| B43             | 57                | 30                 | muBBn                                           | vl              | 21               | 14           | 21                              |                      |
| B44             | 180               | 87                 | muSSn                                           | I/vs/(v)I/(v)t  | 90               | 8            | 12                              |                      |
| B45             | 319               | 156                | moSSn                                           | s/(v)I/t        | 90               | 8            | 12                              |                      |

<sup>\*</sup>Ausbau zur GWM (vgl. Anlage 4); \*\*ohne Berücksichtigung der tatsächlichen Profiltiefe

Hinsichtlich der Wasserversorgung der Vegetation, die in diesem Gutachten nicht berücksichtigt wird, ist die We relevant; die entsprechend mit der nFK zu verrechnen ist /1/.



Die (n)FK weist im UG entsprechend dem heterogenen Untergrundaufbau eine große Spannweite auf. Am günstigsten sind die schluffig-lehmigen Parabraunerden und Kolluvisole (respektive deren Übergangsbodentypen) zu beurteilen, während die skelettreichen Braunerden (respektive deren Übergangsbodentypen) am ungünstigsten zu beurteilen sind.



### 4. Grundwassermessstellen

Am Standort der Sondierungen B4 und B22 erfolgte der Ausbau von temporären GWM; Untergrundaufbau und Ausbau können Anlage 4 entnommen werden.

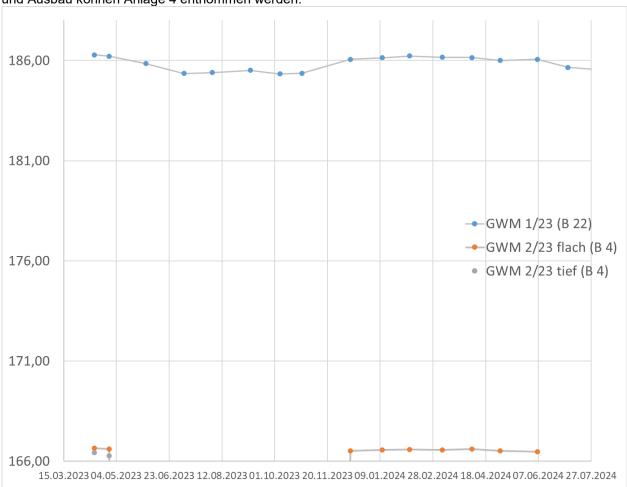



Abbildung 4-1: GwStandsentwicklung in den temporären GWM

Die Gley-Braunerde ist ganzjährig wasserführend, während der Pseudogley im Sw-Horizont lediglich im Winter bis Frühsommer Wasser führt. 2023 wurde auch unterhalb des Stauers noch eine zweite temporär wasserführende Schicht erbohrt. Allerdings konnte nach Mai 2023 kein Wasser mehr angetroffen werden.

Die beiden Bodentypen respektive die GWM geben die in Kapitel 3.1 (s. Abbildung 3-2) dargestellten bodenhydrologischen Verhältnisse daher sehr gut wieder. Der höchste Wasserandrang am Fuß des Schiffenbergs ist von Dezember bis Juni zu erwarten, mit einem Höchststand in März/April. Auch wenn nur ein Jahr überwacht wurde, ist grundsätzlich von diesem Abflussverhalten auszugehen. Die miozänen Tone wirken als effizienter Stauer für den Interflow, so dass sich sogar vereinzelt echte Grundnässe, bspw. B 22, und nicht nur Staunässe, wie es die BFD50 suggeriert, ausbildet.



## 5. Zusammenfassung

Das UG wird hauptsächlich durch Böden aus lösslehmhaltigen bis -reichen Solifluktionsdecken mit basenarmen oder basischen Gesteinsanteilen geprägt. Sie werden im Tal von miozänen Süßwasserschichten (Ton) unterlagert, sind in Teilen auch aus diesen entstanden (zumindest im Unterboden). In den Höhenlagen von miozänem Basalt, dessen entfestigte Oberfläche die Basislage bildet und dessen Einfluss im Profil von unten nach oben abnimmt. Die FK im ersten Meter wird mit gering bis mittel, vereinzelt sogar mit hoch angegeben. Der überwiegende, forstlich genutzte Teil des UG wird durch die forstliche Standortkartierung gut beschrieben. Insbesondere im Tal, auf den kaolinitischen Tonen dominieren wechselfeuchte, mesotrophe Standorte, auf Basalt dagegen frische und eutrophe, was sich mit der amtlichen Bodenkarte sowie den Ergebnissen der Bodenkundlichen Kartierung (s.u.) deckt.

Eine Bodenkundliche Kartierung erfolgte gemäß KA5 wobei der Oberboden mittels Kleinschurf, Unterboden und Untergrund mittels Pürckhauersondierung angesprochen wurden. Die tatsächlichen Bodenverhältnisse sind deutlich komplexer als es die BK 50 mit ihrem relativ groben Maßstab suggeriert. Hinsichtlich der Gründigkeit kann grundsätzlich zwischen den tiefgründigen Böden im Bereich der miozänen Süßwasserschichten (Schiffenberger Tal) und den Böden auf Basalt respektive den darauf gebildeten Fließerden, des Schiffenberg und den übrigen Höhenzügen unterschieden werden. Bei ersteren dominieren im Ober und Unterboden sandige Bodenarten mit geringem Skelettanteil, die in tieferen Schichten in lehmig-tonige übergehen; es dominieren Pseudogleye. Letztere weisen i.d.R. bereits im Oberboden bindige Bodenarten und einen hohen Skelettanteil auf; es dominieren Braunerden.

Unter den miozänen Sanden stehen dichte, skelettarme Tone an, die den Stauhorizont der o.g. pseudovergleyten Böden im Schiffenberger Tal ausmachen. Die Gleye und Flussablagerungen sind dann in nw'-Verlängerung Richtung Lahn respektive s'-Verlängerung des UG Richtung Lückenbach verbreitet. Die (n)FK weist im UG entsprechend dem heterogenen Untergrundaufbau eine große Spannweite auf. Am günstigsten sind die schluffig-lehmigen Parabraunerden und Kolluvisole zu beurteilen, während die skelettreichen Braunerden (respektive jew. deren Übergangsbodentypen) am ungünstigsten zu beurteilen sind. Es wurden zwei temporären GWM eingerichtet, die die oben dargestellten bodenhydrologischen Verhältnisse sehr gut wiedergeben. Der höchste Wasserandrang am Fuß des Schiffenbergs ist von Dezember bis Juni zu erwarten, mit einem Höchststand in März/April. Die miozänen Tone wirken als effizienter Stauer für den Interflow, so dass sich sogar vereinzelt echte Grundnässe ausbildet.

Dementsprechend sind hinsichtlich des Schluckvermögens bzw. der Versickerungsfähigkeit die flachgründigen Braunerden im Bereich der Basaltverbreitung, mit der wahrscheinlich weitgehen als Aquitarde wirksamen Basislage, als ungünstig zu bewerten. Der resultierende Zwischenabfluss/Interflow steht der Vegetation im Hangbereich nur eingeschränkt zur Verfügung und ist für den o.g. Wasserandrang am Fuß des Schiffenbergs ursächlich. Die tiefgründigeren Böden im Tal, mit einer höheren FK, sind wiederum hinsichtlich ihres Schluckvermögens durch die liegenden Tone limitiert. Daher muss es das Ziel sein, durch technische Maßnahmen der Interflow möglichst zu minimieren um sowohl eine ausreichende Wasserversorgung der Vegetation zu gewährleisten, als auch eine Überfrachtung der Versickerungsfähigkleit im Tal zu vermeiden.

### **Büro HG GmbH**

Gießen, den 08.01.2025

Dipl.-Umweltwiss. M.Sc. Dr. Dr. Thomas Hanauer